LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2018
16/17/18PST1MC03/ST 1822 - STATISTICAL MATHEMATICS

Date: 30-10-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION - A

Answer ALL questions. Each carries TWO marks.
(10 $\times 2=20$ marks $)$

1. Let $\mathrm{s}=1,-1,1,-1, \ldots$ and let $\sigma(\mathrm{i})=2 \mathrm{i}-1$ for all $\mathrm{i} \epsilon \mathrm{N}$. Check whether $\mathrm{s} \circ \sigma$ is a subsequence of s . Further if $\sigma(\mathrm{i})=4^{\mathrm{i}}$, write down the subsequence.
2. Prove that the sequence (n) where $\mathrm{n} \epsilon \mathrm{N}$ does not have a limit.
3. If $\left(s_{n}\right)$ converges to $L \neq 0$, prove that $\left((-1)^{n} s_{n}\right)$ oscillates.
4. State the Limit form of the comparison test for the series of positive terms.
5. Define absolute convergence and conditional convergence of a series of real numbers.
6. Find $\sup f(x)$ and $\inf f(x)$ for the function $f(x)=e^{-|x|}$ on $(-\infty, \infty)$.
7. Prove that $\lim _{x \rightarrow 2}(2 x-1)=3$.
8. Let $f(x)=|x|$ for $x \in(-\infty, \infty)$. Show that f does not have a derivative at 0 , even though f is continuous at 0 .
9. State First Fundamental Theorem of Calculus.
10. Define Basis and Dimension of a vector space.

SECTION - B

Answer any FIVE questions. Each carries EIGHT marks.

$$
(5 \times 8=40 \text { marks })
$$

11. exists, then show that it is unique.
12. Prove that the sequence $\left(s_{n}\right)$ where $s_{n}=0$ when n is odd and $s_{n}=1$ when n is even does not converge.
13. State and prove Cauchy Criterion of Convergence of a series.
14. Check for the convergence of the series $\sum_{n=0}^{\infty} x^{n}$ if (i) $0<x<1$, and (ii) $x \geq 1$.
15. Prove that the series $\sum(-1)^{n}\left[\sqrt{n^{2}+1}-\mathrm{n}\right]$ is conditionally convergent.
16. If f and g are both bounded on A and c is any real number, then show that the functions $\mathrm{f}+\mathrm{g}$, cf, and f.g are each bounded on A.
17. If $\mathrm{f} \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$, then prove that $|\mathrm{f}| \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.
18. State and prove the First Mean Value Theorem of Integral calculus.

SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
19(a) Find $\lim _{n \rightarrow \infty} c^{1 / n}$ where c is a fixed positive number.
19(b) By Leibnitz test, verify the convergence of the series:
(i) $\sum \frac{(-1)^{n+1}}{\log (n+1)} \quad$ (ii) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$
20. Let $\mathrm{f}(\mathrm{x})=\frac{1}{x}$. Then show that (i) f is unbounded for $0<\mathrm{x}<\infty$ (ii) $\inf _{\mathrm{x}}>0 \mathrm{f}(\mathrm{x})=0$
(iii) f is bounded on (a, ∞) for any $\mathrm{a}>0$.

21(a) State Comparison Test for convergence of the improper integrals of the first kind. Hence verify the convergence of $\int_{a}^{\infty} \frac{1}{e^{x}+1} d x$.

21(b) Describe μ - Test for Convergence of integral of first kind and test for convergence of
(i) $\int_{0}^{\infty} \frac{x^{2} d x}{\left(k^{2}+x^{2}\right)^{2}}$
(ii) $\int_{0}^{\infty} \frac{x^{3} d x}{\left(k^{2}+x^{2}\right)^{2}}$

22(a) State Taylor's formula and Maclaurin's Theorem with Lagrange's Form of Remainder.
Hence write down Taylor's formula for $\mathrm{f}(\mathrm{x})=\log (1+\mathrm{x})$ about $\mathrm{a}=2$ and $\mathrm{n}=4$.
22(b) Explain the characteristic value problem and define the characteristic roots and vectors.
Hence for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, obtain the characteristic roots and vectors.
\$\$\$\$\$\$\$\$\$

