LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
CC 25		M.Sc. DEGREE EXAMINATION – STATISTICS FIRST SEMESTER – NOVEMBER 2018			
¥ 1	Z				
LUTERS	si 16/1	17/18PST1MC03/	/18PST1MC03/ST 1822 – STATISTICAL MATHEMATICS		
WILL AND A REAL AND A R					
Date	: 30-10-2018	Dept. No.		Max. : 100 Marks	
Time	: 01:00-04:00				
SECTION – A					
Answer A	ALL questions. Eac	ch carries TWO mar	rks.	(10 x 2 = 20 marks)	
Let s = 1, -1, 1, -1, and let $\sigma(i) = 2i - 1$ for all $i \in N$. Check whether s $\circ \sigma$ is a subsequence					
of s.	of s. Further if $\sigma(i) = 4^{i}$, write down the subsequence.				
2. Prove that the sequence (n) where n ϵ N does not have a limit.					
5. If (s_n) converges to $L \neq 0$, prove that $((-1)^n s_n)$ oscillates.					
. State the Limit form of the comparison test for the series of positive terms.					
5. Define absolute convergence and conditional convergence of a series of real numbers.					
5. Find sup f(x) and inf f(x) for the function $f(x) = e^{- x }$ on $(-\infty, \infty)$.					
7. Prove that $\lim_{x \to 2} (2x - 1) = 3$.					
Let $f(x) = x $ for $x \in (-\infty, \infty)$. Show that f does not have a derivative at 0, even though f is					
conti	continuous at 0.				
9. State	State First Fundamental Theorem of Calculus.				
10. Define Basis and Dimension of a vector space.					
SECTION - B					
Answer any FIVE questions. Each carries EIGHT marks. $(5 \times 8 = 40 \text{ marks})$					
11 exists then show that it is unique					
1. exists, men snow that it is unique.					

- 12. Prove that the sequence (s_n) where $s_n = 0$ when n is odd and $s_n = 1$ when n is even does not converge.
- 13. State and prove Cauchy Criterion of Convergence of a series.

14. Check for the convergence of the series $\sum_{n=0}^{\infty} x^n$ if (i) 0 < x < 1, and (ii) $x \ge 1$.

- 15. Prove that the series $\sum (-1)^n [\sqrt{n^2 + 1} n]$ is conditionally convergent.
- 16. If f and g are both bounded on A and c is any real number, then show that the functions f + g, cf, and f.g are each bounded on A.
- 17. If $f \in R[a, b]$, then prove that $|f| \in R[a, b]$ and $|\int_a^b f| \le \int_a^b |f|$.

18. State and prove the First Mean Value Theorem of Integral calculus.

SECTION -CAnswer any TWO questions. Each carries TWENTY marks. $(2 \times 20 = 40 \text{ marks})$ 19(a) Find $\lim_{n \to \infty} c^{1/n}$ where c is a fixed positive number. (10)19(b) By Leibnitz test, verify the convergence of the series: (i) $\sum \frac{(-1)^{n+1}}{\log(n+1)}$ (ii) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ (10)Let $f(x) = \frac{1}{x}$. Then show that (i) f is unbounded for $0 < x < \infty$ (ii) $\inf_{x>0} f(x) = 0$ 20. (iii) f is bounded on (a, ∞) for any a > 0. (20)21(a) State Comparison Test for convergence of the improper integrals of the first kind. Hence verify the convergence of $\int_a^{\infty} \frac{1}{e^{x}+1} dx$. (10)21(b) Describe µ - Test for Convergence of integral of first kind and test for convergence of (i) $\int_0^\infty \frac{x^2 dx}{(k^2 + x^2)^2}$ (ii) $\int_0^\infty \frac{x^3 dx}{(k^2 + x^2)^2}$ (10)22(a) State Taylor's formula and Maclaurin's Theorem with Lagrange's Form of Remainder. Hence write down Taylor's formula for $f(x) = \log(1 + x)$ about a = 2 and n = 4. (10)22(b) Explain the characteristic value problem and define the characteristic roots and vectors. Hence for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, obtain the characteristic roots and vectors. (10)

\$\$\$\$\$\$\$\$\$